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Abstract
The second-order energy shift in the Rayleigh–Schrödinger perturbation theory
is most likely to be positive for large quantum numbers, i.e. for excited
states. Within the Wilson–Sommerfeld approximation, good for large quantum
numbers, we show on the contrary that the sufficient condition for the second-
order shift to be negative is, that the total potential be symmetric and both the
unperturbed and perturbed potentials be monotonically increasing.

PACS numbers: 03.65.−W, 31.15.Md, 03.65.Ge

1. Introduction

Perturbation theory [1–10] is a common tool in the study of eigenvalue problems. A classic
case of an eigenvalue problem is the time-independent Schrödinger equation, which can be
written as

Hψ = − h̄2

2m
∇2ψ + V ψ = Eψ (1.1)

where H is called the Hamiltonian, m is the mass of the particle whose wavefunctions are
given by ψ(�r) and whose eigenenergy is E. The problem is to find the allowed energies En

and the corresponding wavefunctions ψn. The energies En are generally discrete and forced
by boundary conditions of the problem. There are very few situations where E and ψ can be
exactly determined. The shape-invariant potentials for which exact solutions can be found are
discussed in [11]. If we denote the Hamiltonian for which an exact solution can be found by
H0, then an arbitrary Hamiltonian H can be written as

H = H0 + λH ′ (1.2)
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where λ is a parameter and H ′ is called the perturbing Hamiltonian. In this case, if the
eigenvalue of H0 is denoted by E(0)

n and the eigenfunctions by ψ(0)
n then the eigenvalues En

of H can be written in a power series expansion as

En = E(0)
n + λE(1)

n + λ2E(2)
n + · · · , (1.3)

with

E(1)
n = 〈

ψ(0)
n

∣∣H ′∣∣ψ(0)
n

〉
, (1.4)

E(2)
n =

∑
l �=n

∣∣〈ψ(0)
n

∣∣H ′∣∣ψ(0)
l

〉∣∣2

E
(0)
n − E

(0)
l

, (1.5)

and so on. The classic textbooks and reviews [1–7] concentrated mainly on the applicability and
methodology of perturbation theory. Complex problems in this domain include (i) adequacy
of the decomposition equation (1.2), (ii) summability of equation (1.3) and (iii) cases where
the unperturbed and perturbed spectra do not possess a one-to-one mapping. A number of
more recent works appeared to overcome varying types of specific problems. For example, the
calculation of E(m)

n using functions that are not quadratically integrable has been considered
[8]. A perturbation theory using Kolmogorov’s averaging method has been put forward [9].
Certain numerical instabilities have been noted and a way to handle these instabilities in the
Rayleigh–Schrödinger perturbation theory has also been provided [10].

It is, however, true that in spite of all such studies, little is known about the general
properties of E(m)

n . One knows only that

(i) E(1)
n > 0 for a positive definite H ′, and vice versa,

(ii) E
(2)
0 < 0 for any perturbation, and

(iii) E0 � E
(0)
0 + λE

(1)
0 , a variational result.

We may, nevertheless, ask a few more pertinent questions: If E(2)
n < 0, when does it follow

that E
(2)
n+1 < 0? Is there any valid ordering of the type E(2)

n < E
(2)
n+1, or the reverse, and, if so,

when? Are there cases for which all E(2)
n < 0 follow, and, if so, under what condition? None

of these questions seem to have any answer in the literature. What is more, such questions
have never been asked either.

In this work, we shall pay attention to the last question of the previous paragraph: when
does E(2)

n < 0 follow? The first motivation is provided by several perturbative examples from
two well-known and exactly solvable H0, namely the harmonic oscillator and the hydrogen
atom. Indeed, we shall presently see that there exists an infinitude of cases where E(2)

n < 0
is valid, though no proof is available. Secondly, the observation generates two classes of
potentials, one of which yields a negative second-order response to energy for any state.
For atomic systems, one such important response property is the polarizability. Therefore,
one may be tempted to ask the opposite question ‘can the polarizability be negative for any
nondegenerate state?’ A precise answer to such a question seems demanding. More generally,
one may be interested to gain insight into potential families that always yield a positive (or
negative) second-order response for any state.

As regards the observations, we begin with the perturbation series for the one-dimensional
harmonic oscillator

H = p2

2m
+

1

2
mω2x2 + λx2ν, (1.6)

which has been well studied for several values of ν by Reid [12] and Swenson and Danforth
[13]. The results for the nth energy level are as follows

2
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ν = 2, E(2)
n = − (

21
8 + 59

8 n + 51
8 n2 + 17

4 n3
); (1.7)

ν = 3, E(2)
n = − (

3495
64 + 1441

8 n + 225n2 + 3055
16 n3 + 1965

32 n4 + 393
16 n5

); (1.8)

ν = 4, E(2)
n = − (

67 515
32 + 121 253

16 n + 707 805
64 n2 + 685 685

64 n3

+ 167 335
32 n4 + 161 763

64 n5 + 27 895
64 n6 + 3985

32 n7
); (1.9)

and so on. We note that in all the cases studied, E(2)
n is negative. Also, such problems obey

E
(2)
n+1 < E(2)

n . Killingbeck [14] extended the procedure of Swenson and Danforth to the radial
problem (spherically symmetric and hence non-degenerate levels of the central potential) and
found to his surprise that the perturbation λr on the hydrogen atom S-state Hamiltonian,
− 1

2
d2

dr2 − 1
r

d
dr

− 1
r
, once again leads to negative values of E(2)

n . We have additionally checked
that the above conclusion follows for any λrM(M > 1) perturbation as well. Here are a few
results,
M = 1, E(2)

n = − (
5
8n4 + 7

8n6
);

M = 2, E(2)
n = − (

7
4n6 + 345

16 n8 + 143
16 n10

);
M = 3, E(2)

n = − (
621
32 n8 + 32 395

128 n10 + 10 829
32 n12 + 7365

128 n14
);

M = 4, E(2)
n = − (

1089
4 n10 + 297 505

64 n12 + 2167 431
256 n14 + 467 925

128 n16 + 80 123
256 n16

)
.

(1.10)

Such examples also show that E
(2)
n+1 < E(2)

n . This leads us to ask when the second-order
energy shift for a non-degenerate state of the Schrödinger equation is always negative. Is there
anything special with these two types of problems only?

A few points are worth-noting in the present context. First, the sum for E(2)
n shown in

equation (1.5) has both positive and negative terms. For a given energy level n, the contribution
of all levels l which have lower eigenvalues is positive while the contribution from the higher
states is negative. Therefore, if we conjecture that the second-order energy shift for a non-
degenerate state is always negative, it is most likely to fail for the highly excited states, for
which the number of positive terms in the sum of equation (1.5) is extremely high. Hence, we
would focus attention on large n behavior of E(2)

n .
Next we also note that3

n∑
j=0

E
(2)
j < 0 (1.11)

for any n. In the case of finite-dimensional problems (dimensionality = N + 1), n in the above
formula can run up to any value n < N ; but, for n = N , we would instead have

N∑
j=0

E
(2)
j = 0. (1.12)

This equality makes problems in finite dimensions different from those in infinite ones. If,
therefore, we stick to infinite-dimensional problems, we obtain

E
(2)
0 +

n∑
j=1

E
(2)
j < 0 (1.13)

for any n. Suppose now that, for a given problem, E
(2)
j ∼ AjB for a quantum number j with

A being a constant in the leading order. We can then approximately write, at least for large m,
m−1∑
j=0

E
(2)
j + A

∫ n

m

jB dj < 0 (n > m) (1.14)

3 See [6] for comments on equation (1.11).
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and allow the limit n → ∞. For finite E
(2)
0 , one is forced to conclude that A < 0 is the only

reasonable choice when B � −1. This means E
(2)
j < 0 for any j in such situations. The cases

for which B < −1 are then the only potential candidates for showing E
(2)
j > 0 for j > 0. It

is tempting to enquire whether a situation of this kind exists.
Thirdly, for a Hamiltonian

H = p2

2m
+ K|x|µ, (1.15)

if the confining length is L, then the kinetic energy can be estimated as n2h̄2

2mL2 for the nth excited
state and the potential energy can be estimated as KLµ. Optimization leads to the critical
confining length L0 given by

L0 ∝ n
2

2+µ . (1.16)

The n-dependence of the energy is clearly

En ∝ n
2µ

2+µ . (1.17)

For µ > 0, equation (1.17) reveals that En ∝ n for µ = 2, the standard oscillator case
and En ∝ n2 as µ → ∞ which corresponds to the infinite square well. On the other
hand, if µ < 0 and K < 0, then the limit of stability is µ = −1 which corresponds to
En ∝ n−2. We thus observe that n-dependence of a bound state for a Hamiltonian of the form of
equation (1.15) can range from n2 to n−2. Therefore, when we perturb a Hamiltonian of the
form of equation (1.15), the higher energy levels will cause the least effect if En ∝ n2. Thus, a
perturbation on the infinite square well is most likely to cause a breakdown of the presumption
E(2)

n < 0. This indeed does happen [15].
Summarizing, should one conjecture that ‘the second-order energy shift for a non-

degenerate state is always negative’, it fails if the unperturbed Hamiltonian is of the infinite
square well variety, and is most likely to fail if we consider a highly excited state of the
unperturbed Hamiltonian. Since the highly excited states are well described by the Wilson–
Sommerfeld quantization condition, we will use that to prove the following: the sufficient
condition for the second-order energy shift to be always negative is that both the unperturbed
potential and perturbing potential be monotonically increasing and the total potential be
symmetric. We establish this result in section 2 and apply it to a few special cases in
section 3.

2. A semiclassical proof based on the Wilson–Sommerfeld quantization technique

We note that we need to concentrate on the large quantum numbers where the proposed
conjecture, E(2)

n < 0, is the weakest. To do it formally, little option is left except adopting
some semiclassical scheme. For large quantum numbers, the Wilson–Sommerfeld quantization
condition [16] is asymptotically exact. So, it may be employed to gain insight into the problem.
To proceed, we consider the Hamiltonian

H = p2

2m
+ V0(x) + λV (x). (2.1)

Clearly, at the turning point x = a, the total energy is the potential energy and given as
E = V0(a) + λV (a). Hence the Wilson–Sommerfeld quantization condition leads to (for
symmetric V0 and V )

4
∫ a

0

√
En − V0(x) − λV (x) dx = nh. (2.2)

4
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The turning point a will depend on the energy En and for every n, we have

En = V0(a) + λV (a), (2.3)

where both En and a have expansions as powers of λ, which can be written as

En = E(0)
n + λE(1)

n + λ2E(2)
n + · · · ,

a = a(0) + λa(1) + λ2a(2) + · · · . (2.4)

Using these expansions in equation (2.3), we immediately find by equating the powers of λ

a(1) = E(1)
n − V (a(0))

V ′
0(a

(0))
. (2.5)

Introducing the expansions of equation (2.4) in equation (2.2), we next have

nh

4
=

∫ a(0)+λa(1)+λ2a(2)+···

0

√
E

(0)
n − V0(x) + λ

[
E

(1)
n − V (x)

]
+ λ2E

(2)
n + · · · dx

=
∫ a(0)

0

√
E

(0)
n − V0(x) + λ

[
E

(1)
n − V (x)

]
+ λ2E

(2)
n + · · · dx

+
∫ a(0)+λa(1)+λ2a(2)+···

a(0)

√
E

(0)
n − V0(x) + λ

[
E

(1)
n − V (x)

]
+ λ2E

(2)
n + · · · dx

=
∫ a(0)

0

√
E

(0)
n − V0(x) dx +

λ

2

∫ a(0)

0

E(1)
n − V (x)√

E
(0)
n − V0(x)

dx

− λ2

8

∫ a(0)

0

dx
[
E(1)

n − V (x)
]2

[
E

(0)
n − V0(x)

] 3
2

dx +
λ2

2
E(2)

n

∫ a(0)

0

dx√
E

(0)
n − V0(x)

+ · · ·

+
∫ a(0)+λa(1)+λ2a(2)+···

a(0)

√
E

(0)
n − V0(x) + λ

[
E

(1)
n − V (x)

]
+ λ2E

(2)
n + · · · dx. (2.6)

To evaluate the last term on the right-hand side of equation (2.6), we use the result∫ a(0)+�

a(0)

f (x) dx = �f (a(0)) +
�2

2
f ′(a(0)) + · · · . (2.7)

We can now write equation (2.6) as (up to O(λ2))

nh

4
=

∫ a(0)

0

√
E

(0)
n − V0(x) dx +

λ

2

∫ a(0)

0

E(1)
n − V (x)√

E
(0)
n − V0(x)

dx − λ2

8

∫ a(0)

0

dx
[
E(1)

n − V (x)
]2

[
E

(0)
n − V0(x)

] 3
2

dx

+
λ2

2
E(2)

n

∫ a(0)

0

dx√
E

(0)
n − V0(x)

+ · · · + [λa(1) + λ2a(2) + · · ·]

× lim
ε→0

√
E

(0)
n − V0(a(0) − ε) + λ

[
E

(1)
n − V (a(0) − ε)

]
+

1

2
λ2[a(1)]2 lim

ε→0

−V0
′(a(0) − ε)

2
√

E
(0)
n − V0(a(0) − ε)

=
∫ a(0)

0

√
E

(0)
n − V0(x) dx +

λ

2

∫ a(0)

0

E(1)
n − V (x)√

E
(0)
n − V0(x)

dx − λ2

8

∫ a(0)

0

dx
[
E(1)

n − V (x)
]2

[
E

(0)
n − V0(x)

] 3
2

dx

5
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+
λ2

2
E(2)

n

∫ a(0)

0

dx√
E

(0)
n − V0(x)

+ · · · +
λ2

2
a(1) lim

ε→0

E(1)
n − V (a(0) − ε)√

E
(0)
n − V0(a(0) − ε)

− λ2

4
[a(1)]2 lim

ε→0

V0
′(a(0) − ε)√

E
(0)
n − V0(a(0) − ε)

. (2.8)

Equating the identical powers of λ from the two sides of equation (2.8) and using a(1) from
equation (2.5), we get

∫ a(0)

0

√
E

(0)
n − V0(x) dx = nh

4
, (2.9)

E(1)
n =

∫ a(0)

0
V (x) dx√
E

(0)
n −V0(x)∫ a(0)

0
dx√

E
(0)
n −V0(x)

, (2.10)

and

E(2)
n

∫ a(0)

0

dx√
E

(0)
n − V0(x)

= 1

4

∫ a(0)

0

dx
[
E(1)

n − V (x)
]2

[
E

(0)
n − V0(x)

] 3
2

− 1

2
lim
ε→0

[
E(1)

n − V (a(0))
]2

V ′
0(a

(0))

√
E

(0)
n − V0(a(0) − ε)

. (2.11)

We note that the term on the right-hand side of equation (2.11) diverges as ε → 0, but we will
show below that this divergence cancels with the divergence coming from the integral in the
first term and the resulting E(2)

n is finite.
We first treat the divergence in the first integral on the right-hand side. This integral can

be written as

1

4

∫ a(0)

0

dx
[
E(1)

n − V (x)
]2

[
E

(0)
n − V0(x)

] 3
2

= 1

4

∫ a(0)

0

dx
[
E(1)

n − V (x)
]2 − [

E(1)
n − V (a(0))

]2

[
E

(0)
n − V0(x)

] 3
2

+
1

4

∫ a(0)

0

dx
[
E(1)

n − V (a(0))
]2

[
E

(0)
n − V0(x)

] 3
2

= 1

4

∫ a(0)

0

dx
[
E(1)

n − V (x)
]2 − [

E(1)
n − V (a(0))

]2

[
E

(0)
n − V0(x)

] 3
2

+
1

4

[
E(1)

n − V (a(0))
]2

∫ a(0)

0

dx

[V0(a(0)) − V0(x)]
3
2

. (2.12)

Substituting y = a(0) − x, we can write∫ a(0)

0

dx

[V0(a(0)) − V0(x)]
3
2

=
∫ a(0)

0

dy

[V0(a(0)) − V0(a(0) − y)]
3
2

=
⎡
⎣∫ a(0)

0

dy

[V0(a(0)) − V0(a(0) − y)]
3
2

−
∫ a(0)

0

dy

y
3
2
(

δV0
δa

) 3
2

+
∫ a(0)

0

dy

y
3
2
(

δV0
δa

) 3
2

⎤
⎦

6
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=
⎡
⎣∫ a(0)

0

dy

[V0(a(0)) − V0(a(0) − y)]
3
2

−
∫ a(0)

0

dy

y
3
2
(

δV0
δa

) 3
2

+ lim
ε→0

∫ a(0)

ε

dy

y
3
2
(

δV0
δa

) 3
2

⎤
⎦

=
⎡
⎣∫ a(0)

0

y
3
2
(

δV0
δa

) 3
2 − [V0(a

(0)) − V0(a
(0) − y)]

3
2

y
3
2
(

δV0
δa

) 3
2 [V 0(a(0)) − V0(a(0) − y)]

3
2

dy

+ lim
ε→0

1

2
(

δV0
δa

) 3
2

(
1

ε
1
2

− 1

a(0)
1
2

)⎤
⎦ . (2.13)

Now the second term on the right-hand side of equation (2.11) can be written as

lim
ε→0

1

2

[
E(1)

n − V (a(0))
]2

V ′
0(a

(0))

√
E

(0)
n − V0(a(0) − ε)

= lim
ε→0

1

2

[
E(1)

n − V (a(0))
]2

V ′
0(a

(0))
√

V0(a(0)) − V0(a(0) − ε)

= lim
ε→0

1

2

[
E(1)

n − V (a(0))
]2

V ′
0(a

(0))
3
2
√

ε
. (2.14)

Putting these expressions in equation (2.11) we get the final expression as

E(2)
n

∫ a

0

dx√
E(0) − V0(x)

= 1

4

[
E(1)

n − V (a(0))
]2

×
⎡
⎣−1

2

1(
δV0
δa

) 3
2

1

a(0)
1
2

+
∫ a(0)

0

x
3
2
(

δV0
δa

) 3
2 − [V0(a

(0)) − V0(a
(0) − x)]

3
2

x
3
2
(

δV0
δa

) 3
2 [V0(a(0)) − V0(a(0) − x)]

3
2

dx

⎤
⎦

+
1

4

∫ a(0)

0

dx[V (x)2 − V (a(0))2 − 2E(1)
n (V (x) − V (a(0)))][

E
(0)
n − V0(x)

] 3
2

. (2.15)

We now need to examine the various terms on the right-hand side of equation (2.15). The first
term

−1

8

[
E(1)

n − V (a(0))
]2

(
δV0
δa

) 3
2 (a(0))

1
2

is clearly negative. The sign of the second term depends on the sign of

x
3
2

(
δV0

δa

) 3
2

− [V0(a
(0)) − V0(a

(0) − x)]
3
2 .

If V0(x) is a monotonic function of x then the difference V0(a
(0)) − V0(a

(0) − x) is always
greater than the ‘straight-line’ approximation of δV0

δa
x and thus the quantity under consideration

is negative. If we now turn to the third term, we note that it can be written as

1

4

∫ a(0)

0

dx[V (x) − V (a(0))]
[
V (x) + V (a(0)) − 2E(1)

n

]
[
E

(0)
n − V0(x)

] 3
2

.

Looking at this integral, we note that most of the contribution comes from the vicinity of
x = a(0) where the integral is singular. Consequently, we approximate the weighting function
of V (x) + V (a(0)) − 2E(1)

n by its x → a(0) limit which works out to be

−1

6

V ′(a(0))

V ′
0(a

(0))

1[
E

(0)
n − V0(x)

] 1
2

.

7
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Therefore, the integral can be written as

−1

6

V ′(a(0))

V ′
0(a

(0))

∫ a(0)

0

V (x) + V (a(0)) − 2E(1)
n[

E
(0)
n − V0(x)

] 1
2

dx = 1

6

V ′(a(0))

V ′
0(a

(0))

∫ a(0)

0

V (a(0)) − E(1)
n[

E
(0)
n − V0(x)

] 1
2

dx,

(2.16)

where we have used the form of E(1)
n (see equation (2.10)) to obtain the above expression.

Since E(1)
n is the average value of V (x) over a distribution normalized to unity, V (a(0)) > E(1)

n

and hence the expression on the right-hand side of equation (2.16) is always negative provided
V ′(a(0)) and V ′

0(a
(0)) > 0. We thus finally find that all the terms on the right-hand side of

equation (2.15) are negative if V (x) and V0(x) are monotonically increasing functions of x.
This is the central result of the paper.

3. Some applications and discussion

To illustrate the consistency of our result we examine the Hamiltonian

H = p2

2m
+ kx2µ + λx2ν (3.1)

for arbitrary µ and ν. For arbitrary µ and ν the second-order energy expression is virtually
useless to estimate the correction to the ground-state energy. Consequently, we treat the
Hamiltonian of equation (3.1) through the Wilson–Sommerfeld condition. In this case, we
have ∮ √

2m(E − kx2µ − λx2ν) dx = nh. (3.2)

Obviously, the kinetic energy is zero when the displacement from the equilibrium position
reaches its maximum value, i.e. x = a where a is the amplitude. Hence the total energy of the
system becomes

E = ka2µ + λa2ν . (3.3)

Inserting equation (3.3) in equation (3.2) and expanding to O(λ2) leads to

aµ+1I1 +
λ

2k
a1+2ν−µI2 − λ2

8k2
a4ν−3µ−1I3 = nh

4
√

k
, (3.4)

where

I1 = 1

2µ

�
(

1
2µ

)
�

(
3
2

)
�

(
1

2µ
+ 3

2

) , (3.5)

I2 = 1

2µ

[
�

(
1

2µ

)
�

(
1

2µ
+ 1

2

) −
�

(
1+2ν
2µ

)
�

(
1+2ν
2µ

+ 1
2

)
]

�

(
1

2

)
, (3.6)

I3 = 1

2µ

[
2
(

1+2ν
2µ

− 1
2

)
�( 1+2ν

2µ

)
�

(
1+2ν
2µ

+ 1
2

) −
(

1+4ν
2µ

− 1
2

)
�

(
1+4ν
2µ

)
�

(
1+4ν
2µ

+ 1
2

) −
( 1−µ

2µ

)
�

(
1

2µ

)
�

(
1

2µ
+ 1

2

)
]

�

(
1

2

)
. (3.7)

Using expansions given in equation (2.4) in equation (3.3), a straightforward algebra leads to

E(2)
n = µ

2k
a0

4ν−2µ

[
1

µ + 1

I3

I1
+

(
2ν − µ

2 + 1
2

)
(µ + 1)2

I2
2

I1
2 − 2ν

µ(µ + 1)

I2

I1

]
, (3.8)
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where

a0 = µnh

2
√

k

�
(

1
2µ

+ 3
2

)
�

(
1

2µ

)
�

(
3
2

) .

As a special case, when µ = ν, we get the simple expression of second-order energy shift as

E(2)
n = −µ

a0
2µ

2k

1

(1 + µ)2
(3.9)

which is negative definite. If we put µ = 1 and k = 1
2mω2, the Hamiltonian of equation (3.1)

reduces to Hamiltonian of equation (1.6) with the second-order energy shift

E(2)
n =

(√
nh

π

1

(km)
1
4

)4ν−2 [
4ν

2πk

{
�

(
ν + 1

2

)
�(ν + 1)

− √
π

}

+
1√
πk

{
2�

(
ν + 1

2

)
�(ν)

− �
(
2ν + 1

2

)
�(2ν)

}
+

2ν√
πk

�
(
ν + 1

2

)
�(ν + 1)

− √
π

]
. (3.10)

Now we may put ν = 1, 2, . . . in the above expression of E(2)
n to get the following results,

En
(2) = − nh̄

2m2ω3
, ν = 1 (3.11)

En
(2) = −17n3h̄3

4m4ω5
, ν = 2 (3.12)

En
(2) = −393n5h̄5

16m6ω7
, ν = 3 (3.13)

En
(2) = −3985n7h̄7

32m8ω9
, ν = 4 (3.14)

and so on. These results agree with the term carrying the largest power of n in
equations (1.7)–(1.9), as expected. The asymptotic limit, when ν is very large, yields

En
(2) = −

(√
nh
π

1

(km)
1
4

)4µ

πk
2ν(

√
ν). (3.15)

This expression explicitly shows that the second-order energy shift is negative for large ν for
any n.

More interesting is to study the case with ν = 1, but µ arbitrary. The Hamiltonian
becomes

H = p2

2m
+

1

2
mω2x2µ + λx2.

The important point to note here is that the solution of the unperturbed problem H0ψ
(0)
n =

E(0)
n ψ(0)

n , which is essential for the standard perturbation theory, is not known in closed form.
But, using the Wilson–Sommerfeld technique, we should be able to get the correct answer
for the energy levels when the quantum number is large. To proceed with, we employ the
expression for E(2)

n , as given in equation (3.8), and now set ν = 1 to obtain

E(2)
n = µ

2k
a0

4−2µ

[
1

µ + 1

I3

I1
+

(
2 − µ

2 + 1
2

)
(µ + 1)2

I2
2

I1
2 − 2

µ(µ + 1)

I2

I1

]
. (3.16)

We then find

a(0) =
(

2nh̄

mω

) 1
µ+1

. (3.17)
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Putting the value of µ = 2, we get

E(2)
n = − nh̄

2m2ω3
(3.18)

which is negative, and is the same as equation (3.11). This can be seen to be correct as, with
this value of µ, the problem reduces to a simple harmonic oscillator with a modified angular
velocity ω′:

ω′ =
√

ω2 +
2λ

m
. (3.19)

It is the asymptotic limit, when µ is very large, which is of particular interest. In this case, we
find from equation (3.16)

E(2)
n = − 34

45( 2nh̄
mω

)
2µ

µ+1

. (3.20)

The second-order energy shift is once again negative in accordance with the theorem of

section 3. However, it is interesting to note that here E(2)
n ∼ n

− 2µ

1+µ , so that E(2)
n falls off faster

than 1
n

for large n. In section 1, we had noted that this is a potential problem case (see the
discussion below equation (2.4). The fact that we still get a negative shift is a consequence of
the weaker condition of the actual theorem.

We next take a situation where V (x) is not monotonically increasing and consider the
Hamiltonian

H = p2

2m
+

1

2
kx2 + λ(x6 − α2x4). (3.21)

Here the unperturbed Hamiltonian is H0 = p2

2m
+ 1

2kx2, and the perturbation is H ′ =
λ(x6 − α2x4) . Using the Wilson–Sommerfeld technique we should be able to get the correct
answer for the energy levels when the quantum number is large. The kinetic energy is zero
when the displacement from the equilibrium position reaches its maximum value, i.e. x = a,
where a is the amplitude, and hence the total energy of the system is

E = 1
2ka2 + λ(a6 − α2a4). (3.22)

Now using the Wilson–Sommerfeld quantization rule followed by expansion (3.4) and
subsequently equating order by order, we get

E(0)
n = nh̄ω, (3.23)

E(1)
n = 5

16

(
nh

πmω

)3

− 3

8
α2

(
nh

πmω

)2

, (3.24)

E(2)
n = 1

512

1

mω2

(
nh

πmω

)3
[
−393

(
nh

πmω

)2

+ 660α2

(
nh

πmω

)
− 272α4

]
. (3.25)

It is easy to see from equation (3.25) that a range of α exists over which the second-order
energy shift becomes positive, thereby exhibiting the negative content of the theorem.

We end this discussion by pointing out an interesting effect of the symmetry of the
potential. We turn to the scenario where a negative second-order shift can be most easily
jeopardised as explained before—a situation of large quantum numbers and unperturbed
energy proportional to n2. This is the particle in a box problem located, suppose, between

10
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x = 0 and x = L. The perturbing potential is chosen as an attractive delta function placed at
x = pL with 0 < p < 1. The Schödinger equation then reads

− h̄2

2m

d2

dx2
ψ(x) − λδ(x − pL)ψ(x) = Eψ(x). (3.26)

Matching across the δ-function, we find for the second-order shift

E(2)
n = −2m

h̄2

[
sin2(nπp)

n2π2
+

1 − 2p

nπ
sin(2nπp) sin2(nπp)

]
. (3.27)

The shift is negative definite for any n at p = 1
2 , but not so at other values of p. If p = 1

4 , we
have found, for example, that E(2)

n is positive for n = 7. What is the difference between p = 1
2

and other values of p? For p = 1
2 , we note that the perturbation maintains the symmetry that

the original Hamiltonian had about x = L
2 . We now ask whether the second-order shift is

guaranteed to be negative if the perturbation respects the symmetry of the Hamiltonian (for a
one-dimensional problem, this is just the reflection symmetry). With this in mind, we consider
the same problem but now with two attractive delta function potentials, one at x = pL and
another at x = qL with 0 < p < 1 and 0 < q < 1 . Then, the time-independent Schrödinger
equation is

− h̄2

2m

d2

dx2
ψ(x) − λ [δ(x − pL) + δ(x − qL)] ψ(x) = Eψ(x). (3.28)

After some simple algebra, we get the second-order energy shift as

E(2)
n = 8m

h̄2π2

⎡
⎣sin2{nπp}

∑
l �=n

sin2{lπp}
n2 − l2

+ sin2{nπq}
∑
l �=n

sin2{lπq}
n2 − l2

+ 2 sin(nπp) sin(nπq)
∑
l �=n

sin(lπp) sin(lπq)

n2 − l2

⎤
⎦ . (3.29)

In this case, the second-order energy shift for an arbitrary state is negative not for all symmetric
dispositions of p and q, but only for some special case when p = 1

4 and q = 3
4 . It may be

pedagogically worthwhile analyzing why this is so.

4. Conclusion

In perturbation theory, the first nontrivial correction to energy involving, in general, all the
energy eigenstates appears at the second-order. This second-order correction also corresponds
to the leading response property of the system in the given state. Therefore, the importance of
E(2)

n among all E(m)
n is rather obvious. However, while the inequality E

(2)
0 < 0 holds for any

perturbation on any system, it is generally impossible to predict the sign of E(2)
n (n �= 0) even

for simple model systems with specific perturbations.
We have, on the other hand, found that an infinitude of perturbations acting either on the

harmonic oscillator Hamiltonian or the H-atom Hamiltonian lead to the inequality E(2)
n < 0

for any n. Such an observation calls for a closure scrutiny in respect of both the unperturbed
problem and the nature of the perturbation. Our preliminary investigations have revealed that
(i) a breakdown of E(2)

n < 0 is more likely for larger n, (ii) if |E(2)
n | increases with n, then

one would certainly find that E(2)
n < 0 (see, e.g., the discussion around equation (1.13)) and

(iii) the nature of the zero order energy spectrum plays a crucial role in this context, and thus
the negativity of E(2)

n < 0 is more favorable, for example in the case of perturbations on the
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H-atom than perturbations on the particle in a box. We next explored whether the problem
can be handled quantitatively via a semiclassical scheme. This serves two purposes. First, it
simplifies the analysis that would otherwise have not been possible had we gone for a strict
quantum-mechanical proof. Secondly, a semiclassical scheme approaches exactness in the
large-n limit, and precisely in such situations E(2)

n < 0 is more likely to be invalid. Hence , if
the inequality sought is obeyed in a semiclassical context, it is likely to be valid in quantum
domain too at lower n values.

The present work shows that, if the unperturbed and perturbing potentials are both
monotonically increasing, and the total potential is symmetric, then the inequality E(2)

n < 0
follows. This is a sufficient condition but encompasses the observations mentioned in
section 1. For the H-atom problem, a conversion to the one-dimensional form will lead
to similar conclusion as obtained in section 2. We have also checked that the results for the
potential 1

2mω2 +λx2µ found from the second-order perturbation theory and from the Wilson–
Sommerfeld condition agree in the leading n part. More interestingly, while a perturbation of
the form λx2 on the particle in a box problem produces a positive E(2)

n for large n, the same
perturbation acting on a x2µ potential (unperturbed) shows E(2)

n < 0 at any µ 
 1. Note that
the latter problem is not amenable to quantum mechanics properly owing to the lack of exact
solution for the unperturbed eigenvalue problem. However, the Wilson–Sommerfeld scheme
ensures rightly that the unperturbed spectrum for µ 
 1 goes almost as n2, very much like the
box problem. It is here that the importance of the monotonically increasing potential is made
quite apparent. We hope further work along this line may lead to a lot more interesting and
important conclusions that would similarly be relevant to proper quantum mechanics as well.
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